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SUMMARY

Since metal matrix composites (MMC) are composed from two very distinct materials each having

their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the

strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's
were analyzed utilizing Talreja's fatigue life diagram approach. For each MMC, the fatigue life diagram

was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by
fiber fracture and matrix failure were also quantitatively defined.

_TRODUCTION

Due to their high stiffness and low densities, metal matrix composites (MMCs) are being considered

for critical applications in aerospace components. A typical MMC system consists of a relatively stiff fiber

in a somewhat more compliant matrix. The high strength fiber improves the tensile strength and stiffness

of the matrix; but the fatigue strength of the composite also intimately depends on the fiber volume, fiber

orientation, fiber/matrix bonding, and manufacturing defects (i.e., voids, inclusions, fiber fractures, etc.).

Hence, 1VIMC fatigue data might have a wider variability than metallic materials and hence more care has

to be exercised in generating, analyzing, and interpreting the data.

Many of the components for which MMCs are candidate materials are subjected to fluctuating stress
and strain conditions and hence prediction of fatigue life, with its inherent scatter, becomes very essential.

Recent investigations have contributed to an extensive MMC fatigue data base (refs. 1 to 10). In these

studies, both stress and strain controlled experiments have been conducted with the majority of these

experiments having a stress ratio of approximately zero (R o - 0). These investigations have shown that
the composite fatigue response depends on the stress and strain level in addition to other factors such as

fiber volume, fiber orientation, number of plies, etc. Fatigue damage was found to be in the form of either

complete breakage of the fiber, cracking of the matrix, debonding of the fiber from the matrix, nucleation

and propagation of matrix voids, or a combination of these assisted by defects introduced in the manufac-

turing processes. It is thus difficult to characterize and predict fatigue damage and lives in a simple

manner.

The objective of this study is to evaluate the fatigue life of several metal matrix composites based on

the mechanical properties of their constituents. The intent here, is to be a catalyst that will spark the

development of a useful engineering tool for fatigue life prediction of MMCs. For simplicity, isothermal

fatigue cases with fiber orientation in the loading direction are considered in the present study.



THEORETICAL CONSIDERATIONS

The subject life analysis was based on the assumption that nucleation and propagation of composite

fatigue damage is a local phenomenon and hence depends on the weakest link for a given loading condi-

tion. Thus, a composite may be strong at all locations showing no indication of damage nucleation or

growth throughout a major portion of its life. Then failure of the material or its loss of load carrying

capacity may occur suddenly when the damage accumulates beyond a critical amount.

Consider a simple composite model consisting of matrix surrounding a fiber with the loading direction

parallel to the fiber orientation. As stated previously, the fiber, relative to the matrix, has a very high

strength and an extremely low ductility. The fiber's mechanical behavior can be considered elastic up to
fracture and in most cases having an associated fracture strain of approximately 1.0 percent (ref. 1). Such

high strength elastic materials are very sensitive to the presence of any small defects. Even a scratch on

the surface of a high strength elastic material can reduce its strength drastically. Typically, the fatigue
strength of a defect free fiber is relatively high, and over a range of lives from 1 to 10 7 cycles, the fatigue

stress levels are only reduced by approximately 80 percent of its fracture strength (refs. 1 and 4). Since

the fiber is mainly elastic, one can say that the maximum strain levels in fatigue have the same 80 per-
cent reduction from the fracture strain for fatigue lives ranging from 1 to 107 cycles. Figure 1 shows the

relation between maximum strain and fatigue life of Tungsten and Boron fibers (refs. 1 and 4). Based on

figure 1, the fatigue life relation for fibers can be given by

_max---- AfiCNf) all (1)

where Aft = 0.01 and aft = -0.015 (the slope corresponding to an approximate 80 percent reduction of
stress or strain over a life span of 10 million cycles). Note, strain instead of stress is chosen as an indepen-

dent variable, because in a composite that is loaded along the fiber axis, both fibers and matrix would be

subjected to the same strain while stresses in the two phases would differ depending on the fiber volume

fraction and their elastic moduli.

In a typical MMC, the matrix is weaker and more ductile than the fiber. Thus during fatigue cycling,

the matrix is likely to exhibit a greater amount of plastic deformation than the fiber and therefore is

more susceptible to low cycle fatigue damage. Based on this rationale, the maximum strain versus fatigue
life relation for the matrix should be applicable in defining the composite's fatigue response. The general-

ized form of the ema x versus Nf relationship can be given by

a u

6ma x = Amy (Nf) a" + Bm(Nf) #=
(2)

where a u and E are respectively the ultimate tensile strength and the elastic modulus of the matrix, and

constants A m and Bin, are functions of temperature.

Figure 2(a) shows two idealized failure modes in the single fiber _C model subjected tO fatigue of ....

varying maximum strain. If the applied strain condition is such that the maximum strain (6_) exper-

ienced by the material is greater than the fiber fracture strain (eofi), then it can be expected that the
fiber will fracture. Once the fiber breaks, a stress concentration regionwi! ! be introduced and the

remaining area of the matrix will not be able to take up the applied load and fracture of the composite

will occur. If the maximum applied strain ($max) is less than the fiber fracture strain (eoti), then the
failure will start from the matrix as governed by the equation (2). The damage in the form of fatigue
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cracks will grow in the matrix and possibly along the interface of the matrix and the fiber and failure will

occur. As the strain level is reduced, the damage will be only in the matrix. However, as the damage

spreads along the cross section of the composite, it is likely to introduce a notch effect on the fiber,

thereby increasing the local stresses in the fiber. This will eventually lead to the failure of the composite

even though the fiber fracture strain is much higher than the applied maximum strain. Thus, in the

present analysis it is assumed that the weaker of the two components, namely, the fiber or the matrix

will govern the failure of the composite depending on the applied strain level.

Figure 2(b) shows schematically the fatigue life diagram of a typical composite as originally proposed

by Talreja (ref. 7). The shaded area gives the possible scatterband inherent in any fatigue testing. Ideal-
ized fatigue lines representing equations (1) and (2) are shown for discussion purposes. Note that the

fatigue limit of the composite in terms of maximum strain, is governed by the fatigue limit of the matrix.

The diagram shows three distinct regions. In the first re_ion, fiber fracture in the composite controls the
fatigue life. The strain variation in this region, up to 10 cycles, is small, because the slope of the fatigue

line of the fiber is only -0.015. In the second region, plasticity and low cycle fatigue strength of the

matrix govern the relation, as given by equation (2). The second region spreads over a life of two decades,

from around 103 to 105 cycles. The transition life, Nfm, which separates the fiber controlled fracture

region (Region I) from the matrix controlled fracture region (Region II) in figure 2(b), can be obtained by

equating equations (1) and (2). In the third region of the fatigue life diagram where the fatigue life is
approximately 10e cycles and longer, the elastic strain of the matrix appears to determine the fatigue life.

DATA ANALYSIS

The experimental results of the following metal matrix composites are studied to understand and

develop the fatigue life diagram.

(1) SiC/Ti-24AI-11Nb (ref..6)

(2) SiC/Ti-15-3 (ref. 2)

(3) W/Cu (ref. 4)

(4) W/Waspaloy (ref. 11)

(5) W/Inconel 907 alloy (ref. 11)

In the first three cases the stress ratio was zero (R e -- 0) and in the last two R¢ = 0.2. The fiber orienta-
tion is parallel to the loading axis. In all cases, the fiber fracture strengths were relatively high, in the

range of 3500 to 4000 MPa, with fracture strains of approximately 1.0 percent. The stress-strain behavior

of the fiber was assumed to be elastic. Taking,the fiber fracture strain as the composite's fracture strain,
with a corresponding cycle to failure as unity, one can construct the composite's fatigue life relationship

for Region I by using equation (1) and assuming a slope of -0.015. For the composite's fatigue life rela-

tionship in Regions II and III, equation (2) can be used with values of the constants based on the matrix

properties as given in table I. Note that the values of am, Am, 3m, and Bm were determined for each

composite system by using each composites' fatigue data and its corresponding matrix tensile properties

in a multiple regression analysis.

*This differs from conventional fatigue ideology where life would be considered 0.5 for a tension-

tension fatigue test.
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The fatigue life diagrams for SiC/Ti-24Al-11Nb, SiC/Ti-15-3, W-Cu, W/Waspaloy, and W/IN 907 are
presented in figures 3(a) to (d). Note that in these figures, the strain-controlled test data axe denoted by

closed symbols and the open symbols represent load-controlled tests. Matrix fatigue lives were also plot-

ted if available (figs. 3(b) and (c)). The fatigue life diagrams were obtained by the combination of the

two fatigue life relations (eqs. (1) and (2)) and the values from table I.

In all cases, there were good correlations between theoretical approximations and experimental data

(figs. 3(a) to (d)). Note some of these cases had fatigue data from tests with different control modes

(figs. 3(a), (b), and (d)) and test specimens with different fiber volumes (fig. 3(c)), thus illustrating the

viability of this approach for a number of situations. However, more work is needed to examine the

feasibility of this approach as it pertains to different ply layups and types of loadings.

The transition life of the composite from fiber controlled to matrix controlled mechanism, Nfm, has
been obtained by equating relations (1) and (2). Figure 4 shows the correlation between the calculated

and the experimental values. The prediction appears to be within the experimental scatter.

DISCUSSION

Talreja (ref. 7) has discussed the fatigue behavior of glass/epoxy and graphite/epoxy composites and

suggested that a strain based fatigue life relation can be represented by three regions. In the present

analysis, it was found for metal matrix composites, a similar type of fatigue diagram is applicable and
that the three regions can be quantified in terms of the basic fatigue properties of the fiber and the

matrix. In the first region the fatigue strength is governed by the fracture strain of the fiber which is of

the order of 0.01 with an attendant scatter. The slope of the fatigue life llne in this region is taken as

-0.015 assuming that the life reduction of the defect free fiber is by about 80 percent over a life span of
107 cycles. The second region starts from the point where the fatigue life llne of the matrix intersects the

fatigue life line of the fiber. Beyond this point the fatigue properties of the matrix controls the life of the
composite. The second region extends up to around 10'_ cycles where both the elastic and plastic deforma-

tion of the matrix will play a role in the initiation and propagation of fatigue cracks. In the third region,
where elastic strain of the matrix controls the fatigue life, the slope of the fatigue line was approximately

-0.12, interestingly this is identical to the Universal Slopes Equation proposed by Manson (ref. 13). Due

to the small magnitude of this slope, it appears that a fatigue limit of the composite is reached at strain
levels corresponding to a life of 10 cycles.

The analysis in the present investigation has been verified only for cases where the fiber orientation is

parallel to the loading axis. If the fibers are oriented at an off-angle relative to the loading direction _i.e.,

:[:30 °, -{-45°), then the shear strain along that direction and the shear fracture strain corresponding to

debonding between the fiber and the matrix should be considered for a fatigue life analysis.

CONCLUSIONS

From the present study, the following conclusions can be drawn for the prediction of fatigue of metal

matrix composites with the loading axis parallel to the fiber orientation:

1. For a composite, the maximum strain level in fatigue loading corresponds to the fracture strain of
the fiber.

2. The maximum strain--fatigue life of the fiber can be described by the equation
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_max = Afi(Nf) "_

where the exponent afi is of the order of -0.015.

3. The maximum strain-fatigue life relation of the matrix can be expressed by a simple equation of the
form

O" u

_max = Am-_-(Nf) a_ + Bm(Nf) _

where the constantsand the exponents are dependent on the materialand temperature.

4. The fatigue life relation of the composite can be given by a combination of the above two relations.

This results in three regions of the life diagram; (a) Up to around 103 cycles the maximum strain varia-

tion is almost negligible and the fatigue life is governed by the fiber fracture. (b) A region from 103 to
105 cycles where the maximum strain decreases with a resultant increase in the fatigue llfe. In this region

the fatigue life is controlled by the plasticity and the low cycle fatigue strength of the matrix. (c) In the
third region at around 107 cycles, the decrease in strain is very small and this could be considered as the

shakedown value with the corresponding life to be infinity for all practical purposes.

5. For the five MMCs analyzed, the above approach of predicting the fatigue life based on the proper-

ties of the constituents appears to give a very good correlation with the experimental data. The fatigue

life diagram suggested by Talreja is also applicable to MMC and is quantified in terms of the fatigue
properties of the fiber and the matrix.
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TABLE L--MATRIX PROPERTIES AND CONSTANT VALUES USED

IN THE FATIGUE LIFE DIAGRAM CONSTRUCTION

Material Temperature,
"C

425SiC/Ti.24AI-11Nb

SiC/Ti-15-3

W/Cu

815

300

550

26O

560

W/WMpaloy 860

W/IN 907 ahoy 860

A_

3.5

2.0

2.0

1.5

6.2

6.8

1.7

I 1.7

a= B= p=

-0.175 0.065 -0.4

-0.12 0.01 -0.6

-0.12 0.04 -0.6

O'ua

MPa

550

300

937

-0.12

-0.12

-0.12

-0.12

I -0.12

0.04 -0.6 6TO

0.20 -0.6 275
,=,

0.20 -0.55 90

0.04 -0.6 800

0.04 -0.6 800

E_

GPa

76

43

97

76

101

58

85

85
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Rgure 1.--Relation between maximum strain and the fatigue life
for tungsten and boron defect free fibers.
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(b) Schematic diagram of Metal Matrix Composite showing the
three regions controlled by fiber fracture, rnatdx plasticity and
matrix elasticity.

Rgure 2.--Basic approach.
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Figure 3.nTheory correlated to experimental data.
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values of the transition fatgue life giving the boundary between
the fiber controlled and matrix controlled fatigue regions.
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